1
GATE CSE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Suppose L = { p, q, r, s, t } is a lattice represented by the following Hasse diagram: GATE CSE 2015 Set 1 Discrete Mathematics - Graph Theory Question 27 English For any $$x, y ∈ L$$, not necessarily distinct, $$x ∨ y$$ and x ∧ y are join and meet of x, y, respectively. Let $$L^3 = \left\{\left(x, y, z\right): x, y, z ∈ L\right\}$$ be the set of all ordered triplets of the elements of L. Let pr be the probability that an element $$\left(x, y,z\right) ∈ L^3$$ chosen equiprobably satisfies $$x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)$$. Then
A
pr = 0
B
pr = 1
C
$$0 < p_r ≤ \frac{1}{5}$$
D
$$\frac{1}{5} < p_r < 1$$
2
GATE CSE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The probabilities that a student passes in Mathematics, Physics and Chemistry are $$m, p$$ and $$c$$ respectively. Of these subjects, the student has $$75$$% chance of passing in at least one, a $$50$$% chance of passing in at least two and a $$40$$% chance of passing in exactly two. Following relations are drawn in $$m, p, c:$$
$${\rm I}.$$ $$\,\,\,\,\,\,$$ $$p+m+c=27/20$$
$${\rm I}{\rm I}.$$ $$\,\,\,\,\,\,$$ $$p+m+c=13/20$$
$${\rm I}{\rm I}{\rm I}.$$ $$\,\,\,\,\,\,$$ $$\left( p \right) \times \left( m \right) \times \left( c \right) = 1/10$$
A
Only relation $${\rm I}$$ is true
B
Only relation $${\rm I}$$$${\rm I}$$ is true
C
Relations $${\rm I}$$$${\rm I}$$ and $${\rm I}$$$${\rm I}$$$${\rm I}$$ are true
D
Relations $${\rm I}$$ and $${\rm I}$$$${\rm I}$$$${\rm I}$$ are true
3
GATE CSE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Given Set $$\,\,\,A = \left\{ {2,3,4,5} \right\}\,\,\,$$ and Set $$\,\,\,B = \left\{ {11,12,13,14,15} \right\},\,\,\,$$ two numbers are randomly selected, one from each set. What is the probability that the sum of the two numbers equal $$16?$$
A
$$0.20$$
B
$$0.25$$
C
$$0.30$$
D
$$0.33$$
4
GATE CSE 2015 Set 1
MCQ (Single Correct Answer)
+1
-0.3
If $$g(x)=1-x$$ & $$h\left( x \right) = {x \over {x - 1}}\,\,$$ then $$\,\,{{g\left( {h\left( x \right)} \right)} \over {h\left( {g\left( x \right)} \right)}}\,\,\,$$ is
A
$${{h\left( x \right)} \over {g\left( x \right)}}$$
B
$${{ - 1} \over x}$$
C
$${{g\left( x \right)} \over {h\left( x \right)}}$$
D
$${x \over {{{\left( {1 - x} \right)}^2}}}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12