1
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
Let Graph$$(x)$$ be a predicate which denotes that $$x$$ is a graph. Let Connected$$(x)$$ be a predicate which denotes that $$x$$ is connected. Which of the following first order logic sentences DOES NOT represent the statement: $$Not\,\,\,every\,\,\,graph\,\,\,is\,\,\,connected?$$
A
$$\neg \forall x\left( {Graph\left( x \right) \Rightarrow Connected\left( x \right)} \right)$$
B
$$\exists x\left( {Graph\left( x \right) \wedge \neg Connected\left( x \right)} \right)$$
C
$$\neg \forall x\left( {\neg Graph\left( x \right) \vee Connected\left( x \right)} \right)$$
D
$$\forall x\left( {Graph\left( x \right) \Rightarrow \neg Connected\left( x \right)} \right)$$
2
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
Which of the following graphs has an Eulerian circuit?
A
Any $$k$$-regular graph where $$k$$ is an even number.
B
A complete graph on 90 vertices.
C
The complement of a cycle on 25 vertices.
D
None of the above.
3
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
Suppose that a robot is placed on the Cartesian plane. At each step it is allowed to move either one unit up or one unit right, i.e., if it is at $$(i, j)$$ then it can move to either $$(i+1, j)$$ or $$(i, j+1)$$

Suppose that the robot is not allowed to traverse the line segment from $$(4, 4)$$ to $$(5,4)$$. With this constraint, how many distinct path are there for the robot to reach $$(10, 10)$$ starting from $$(0,0)$$?

A
$${2^{9}}$$
B
$${2^{19}}$$
C
$$\left( {\matrix{ 8 \cr 4 \cr } } \right) \times \left( {\matrix{ {11} \cr 5 \cr } } \right)$$
D
$$\left( {\matrix{ {20} \cr {10} \cr } } \right) - \left( {\matrix{ 8 \cr 4 \cr } } \right) \times \left( {\matrix{ {11} \cr 5 \cr } } \right)$$
4
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
Suppose that a robot is placed on the Cartesian plane. At each step it is allowed to move either one unit up or one unit right, i.e., if it is at $$(i, j)$$ then it can move to either $$(i+1, j)$$ or $$(i, j+1)$$

How many distinct path are there for the robot to reach the point $$(10, 10)$$ starting from the initial position $$(0, 0)$$?

A
$$\left( {\matrix{ {20} \cr {10} \cr } } \right)$$
B
$${2^{20}}$$
C
$${2^{10}}$$
D
None of the above
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12