1
GATE CE 2024 Set 1
MCQ (Single Correct Answer)
+2
-0.833

What are the eigenvalues of the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ ?

A

1, 2, 5

B

1, 3, 4

C

-5, 1, 2

D

-5, -1, 2

2
GATE CE 2024 Set 1
MCQ (Single Correct Answer)
+2
-0.833

A vector field $\vec{p}$ and a scalar field $r$ are given by:

$\vec{p} = (2x^2 - 3xy + z^2) \hat{i} + (2y^2 - 3yz + x^2) \hat{j} + (2z^2 - 3xz + x^2) \hat{k}$

$r = 6x^2 + 4y^2 - z^2 - 9xyz - 2xy + 3xz - yz$

Consider the statements P and Q:

P: Curl of the gradient of the scalar field $r$ is a null vector.

Q: Divergence of curl of the vector field $\vec{p}$ is zero.

Which one of the following options is CORRECT?

A

Both P and Q are FALSE

B

P is TRUE and Q is FALSE

C

P is FALSE and Q is TRUE

D

Both P and Q are TRUE

3
GATE CE 2024 Set 1
Numerical
+2
-0

The return period of a large earthquake for a given region is 200 years. Assuming that earthquake occurrence follows Poisson’s distribution, the probability that it will be exceeded at least once in 50 years is ______________ % (rounded off to the nearest integer).

Your input ____
4
GATE CE 2024 Set 1
Numerical
+2
-0

A 2 m × 2 m tank of 3 m height has inflow, outflow and stirring mechanisms. Initially, the tank was half-filled with fresh water. At $ t = 0 $, an inflow of a salt solution of concentration 5 g/ $ m^3 $ at the rate of 2 litre/s and an outflow of the well stirred mixture at the rate of 1 litre/s are initiated. This process can be modelled using the following differential equation:

$$ \frac{dm}{dt} + \frac{m}{6000 + t} = 0.01 $$

where $ m $ is the mass (grams) of the salt at time $ t $ (seconds). The mass of the salt (in grams) in the tank at 75% of its capacity is ______________ (rounded off to 2 decimal places).

Your input ____
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12