1
GATE CE 2002
MCQ (Single Correct Answer)
+1
-0.3
The value of the following definite integral in $$\int\limits_{{\raise0.5ex\hbox{$\scriptstyle { - \pi }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}^{{\raise0.5ex\hbox{$\scriptstyle \pi $} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}} {{{Sin2x} \over {1 + \cos x}}dx = \_\_\_\_\_\_\_\_.} $$
A
$$-2log$$ $$2$$
B
$$2$$
C
$$0$$
D
None
2
GATE CE 2002
MCQ (Single Correct Answer)
+2
-0.6
The directional derivative of the following function at $$(1, 2)$$ in the direction of $$(4i+3j)$$ is : $$f\left( {x,y} \right) = {x^2} + {y^2}$$
A
$$4/5$$
B
$$4$$
C
$$2/5$$
D
$$1$$
3
GATE CE 2002
MCQ (Single Correct Answer)
+2
-0.6
The Laplace transform of the following function is $$$f\left( t \right) = \left\{ {\matrix{ {\sin t} & {for\,\,0 \le t \le \pi } \cr 0 & {for\,\,t > \pi } \cr } } \right.$$$
A
$$1/\left( {1 + {s^2}} \right)\,$$ for all $$\,s > 0$$
B
$$1/\left( {1 + {s^2}} \right)\,$$ for all $$\,s < \pi $$
C
$$\left( {1 + {e^{ - \pi s}}} \right)/\left( {1 + {s^2}} \right)$$ for all $$s>0$$
D
$${e^{ - \pi s}}/\left( {1 + {s^2}} \right)$$ for all $$s > 0$$
4
GATE CE 2002
Subjective
+2
-0
Using Laplace transforms, solve $${a \over {{s^2} - {a^2}}}\,\,\left( {{d^2}y/d{t^2}} \right) + 4y = 12t\,\,$$
given that $$y=0$$ and $$dy/dt=9$$ at $$t=0$$
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSATMHT CET
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN