1
GATE CE 2002
Subjective
+2
-0
Using Laplace transforms, solve $${a \over {{s^2} - {a^2}}}\,\,\left( {{d^2}y/d{t^2}} \right) + 4y = 12t\,\,$$
given that $$y=0$$ and $$dy/dt=9$$ at $$t=0$$
2
GATE CE 2002
MCQ (Single Correct Answer)
+2
-0.6
The Laplace transform of the following function is $$$f\left( t \right) = \left\{ {\matrix{ {\sin t} & {for\,\,0 \le t \le \pi } \cr 0 & {for\,\,t > \pi } \cr } } \right.$$$
A
$$1/\left( {1 + {s^2}} \right)\,$$ for all $$\,s > 0$$
B
$$1/\left( {1 + {s^2}} \right)\,$$ for all $$\,s < \pi $$
C
$$\left( {1 + {e^{ - \pi s}}} \right)/\left( {1 + {s^2}} \right)$$ for all $$s>0$$
D
$${e^{ - \pi s}}/\left( {1 + {s^2}} \right)$$ for all $$s > 0$$
3
GATE CE 2002
MCQ (Single Correct Answer)
+2
-0.6
The directional derivative of the following function at $$(1, 2)$$ in the direction of $$(4i+3j)$$ is : $$f\left( {x,y} \right) = {x^2} + {y^2}$$
A
$$4/5$$
B
$$4$$
C
$$2/5$$
D
$$1$$
4
GATE CE 2002
MCQ (Single Correct Answer)
+1
-0.3
The value of the following definite integral in $$\int\limits_{{\raise0.5ex\hbox{$\scriptstyle { - \pi }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}^{{\raise0.5ex\hbox{$\scriptstyle \pi $} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}} {{{Sin2x} \over {1 + \cos x}}dx = \_\_\_\_\_\_\_\_.} $$
A
$$-2log$$ $$2$$
B
$$2$$
C
$$0$$
D
None
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12