1
KCET 2018
MCQ (Single Correct Answer)
+1
-0
The value of determinant $\left|\begin{array}{lll}a-b & b+c & a \\ b-a & c+a & b \\ c-a & a+b & c\end{array}\right|$ is
A
$a^3+b^3+c^3$
B
$(a+b+c) \left[ 2a^2 - ac - ab - bc + b^2 \right] $
C
$a^3+b^3+c^3-3 a b c$
D
$a^3+b^3+c^3+3 a b c$
2
KCET 2018
MCQ (Single Correct Answer)
+1
-0
If $\left(x_1, y_1\right),\left(x_2, y_2\right)$ and $\left(x_3, y_3\right)$ are the vertices of a triangle whose are is ' $k$ ' square units, then $\left|\begin{array}{lll}x_1 & y_1 & 4 \\ x_2 & y_2 & 4 \\ x_3 & y_3 & 4\end{array}\right|^2$ is
A
$32 k^2$
B
$16 k^2$
C
$64 k^2$
D
$48 k^2$
3
KCET 2018
MCQ (Single Correct Answer)
+1
-0
Let $A$ be a square matrix of order $3 \times 3$, then $|5 A|$ is equal to
A
$5|A|$
B
$125|\mathrm{~A}|$
C
$25|\mathrm{~A}|$
D
$15|\mathrm{~A}|$
4
KCET 2017
MCQ (Single Correct Answer)
+1
-0
$$ \text { } \begin{aligned} Let\,\,\,\Delta & =\left|\begin{array}{lll} A x & x^2 & 1 \\ B y & y^2 & 1 \\ C z & z^2 & 1 \end{array}\right| \text { and } \Delta_1 =\left|\begin{array}{ccc} A & B & C \\ x & y & z \\ z y & z x & x y \end{array}\right| \text {, then }\left|\begin{array}{ccc} A x & B y & C y \\ x^2 & y^2 & z^2 \\ 1 & 1 & 1 \end{array}\right| \end{aligned} $$
A
$\Delta_1=2 \Delta$
B
$\Delta_1=-\Delta$
C
$\Delta_1=\Delta$
D
$\Delta_1 \neq \Delta$
KCET Subjects
EXAM MAP