1
KCET 2020
MCQ (Single Correct Answer)
+1
-0

If $$A=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$$ then $$A^4$$ is equal to

A
A
B
2A
C
I
D
4A
2
KCET 2020
MCQ (Single Correct Answer)
+1
-0

If $$\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right) A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$$ then the matrix $$a$$ is

A
$$\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)$$
B
$$\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)$$
C
$$\left(\begin{array}{cc}-2 & 1 \\ 3 & -2\end{array}\right)$$
D
$$\left(\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right)$$
3
KCET 2020
MCQ (Single Correct Answer)
+1
-0

If $$f(x)=\left|\begin{array}{ccc}x^3-x & a+x & b+x \\ x-a & x^2-x & c+x \\ x-b & x-c & 0\end{array}\right|$$, then

A
$$f(\mathrm{l})=0$$
B
$$f(2)=0$$
C
$$f(0)=0$$
D
$$f(-1)=0$$
4
KCET 2020
MCQ (Single Correct Answer)
+1
-0

If $$A$$ and $$B$$ are square matrices of same order and $$B$$ is a skew symmetric matrix, then $$A^{\prime} B A$$ is

A
Symmetric matrix
B
Null matrix
C
Diagonal matrix
D
Skew symmetric matrix
KCET Subjects
EXAM MAP