1
KCET 2019
MCQ (Single Correct Answer)
+1
-0

$$\sum_\limits{r=1}^n(2 r-1)=x$$ then, $$ \lim _\limits{n \rightarrow \infty}\left[\frac{1^3}{x^2}+\frac{2^3}{x^2}+\frac{3^3}{x^2}+\ldots+\frac{n^3}{x^2}\right]=$$

A
1
B
$$\frac{1}{2}$$
C
4
D
$$\frac{1}{4}$$
2
KCET 2019
MCQ (Single Correct Answer)
+1
-0

Rolle's theorem is not applicable in which one of the following cases?

A
$$f(x)=|x|$$ in $$[-2,2]$$
B
$$f(x)=x^2-4 x+5$$ in [1, 3]
C
$$f(x)=[x]$$ in $$[25,27]$$
D
$$f(x)=x^2-x$$ in $$[0,1]$$
3
KCET 2018
MCQ (Single Correct Answer)
+1
-0
The value of $\lim \limits_{x \rightarrow 0} \frac{[x]}{x}$ is :
A
1
B
-1
C
0
D
Does not exists
4
KCET 2018
MCQ (Single Correct Answer)
+1
-0

If $f(x)=\left\{\begin{array}{clc}\frac{\sqrt{1+k x}-\sqrt{1-k x}}{x} & \text { if }-1 \leq x<0 \\ \frac{2 x+1}{x-1} & \text { if } 0 \leq x \leq 1\end{array}\right.$

is continuous at $x=0$, then the value of $k$ is

A
$k=1$
B
$k=-1$
C
$k=0$
D
$k=2$
KCET Subjects
EXAM MAP