1
KCET 2022
MCQ (Single Correct Answer)
+1
-0

If $$f(x)=\left\{\begin{array}{cc}x^2-1, & 0< x<2 \\ 2 x+3, & 2 \leq x<3\end{array}\right.$$,

the quadratic equation whose roots are $$\lim _\limits{x \rightarrow 2^{-}} f(x)$$ and $$\lim _\limits{x \rightarrow 2^{+}} f(x)$$ is

A
$$x^2-14 x+49=0$$
B
$$x^2-10 x+21=0$$
C
$$x^2-6 x+9=0$$
D
$$x^2-7 x+8=0$$
2
KCET 2022
MCQ (Single Correct Answer)
+1
-0

$$\lim _\limits{y \rightarrow 0} \frac{\sqrt{3+y^3}-\sqrt{3}}{y^3}=$$

A
$$\frac{1}{2 \sqrt{3}}$$
B
$$\frac{1}{3 \sqrt{2}}$$
C
$$2 \sqrt{3}$$
D
$$3 \sqrt{2}$$
3
KCET 2021
MCQ (Single Correct Answer)
+1
-0

Consider the following statements

statement 1: $$\lim _\limits{x \rightarrow 1} \frac{a x^2+b x+c}{x^2+b x+a}$$ is 1

(where $$a+b+c \neq 0$$).

statement 2: $$\lim _\limits{x \rightarrow -2} \frac{\frac{1}{x}+\frac{1}{2}}{x+2}$$ is $$\frac{1}{4}$$.

A
Only statement 2 is true.
B
Only statement 1 is true.
C
Both statements 1 and 2 are true.
D
Both statements 1 and 2 are false.
4
KCET 2021
MCQ (Single Correct Answer)
+1
-0

If $$f(x)=\left|\begin{array}{ccc}\cos x & 1 & 0 \\ 0 & 2 \cos x & 3 \\ 0 & 1 & 2 \cos x\end{array}\right|$$, then $$\lim _\limits{x \rightarrow \pi} f(x)$$ is equal to

A
$$-$$1
B
1
C
0
D
3
KCET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12