1
KCET 2019
MCQ (Single Correct Answer)
+1
-0

$$[\mathbf{a}+2 \mathbf{b}-\mathbf{c}, \mathbf{a}-\mathbf{b}, \mathbf{a}-\mathbf{b}-\mathbf{c}]=$$

A
$$2[\mathbf{a}, \mathbf{b}, \mathbf{c}]$$
B
0
C
$$3[\mathbf{a}, \mathbf{b}, \mathbf{c}]$$
D
$$[\mathbf{a}, \mathbf{b}, \mathbf{c}]$$
2
KCET 2018
MCQ (Single Correct Answer)
+1
-0
If $|\vec{a} \times \vec{b}|^2+|\vec{a} \cdot \vec{b}|^2=144$ and $|\vec{a}|=4$, then the value of $|\vec{b}|$ is
A
1
B
2
C
3
D
4
3
KCET 2018
MCQ (Single Correct Answer)
+1
-0
If $\vec{a}$ and $\vec{b}$ are mutually perpendicular unit vectors, then $(3 \vec{a}+2 \vec{b}) \cdot(5 \vec{a}-6 \vec{b})$ is equal to
A
5
B
3
C
6
D
12
4
KCET 2018
MCQ (Single Correct Answer)
+1
-0
If the vector $a \hat{i}+\hat{j}+\hat{k} ; \hat{i}+b \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+c \hat{k}$ are coplanar $(a \neq b \neq c \neq 1)$, then the value of $a b c-(a+b+c)$ is equal to
A
2
B
-2
C
0
D
-1
KCET Subjects
EXAM MAP