1
KCET 2018
MCQ (Single Correct Answer)
+1
-0
If $\vec{a}=\hat{i}+\lambda \hat{j}+2 \hat{k} ; \vec{b}=\mu \hat{i}+\hat{j}-\hat{k}$ are orthogonal and $|\vec{a}|=|\vec{b}|$, then $(\lambda, \mu)$ is equal to
A
$\left(\frac{1}{4} \frac{7}{4}\right)$
B
$\left(\frac{7}{4}, \frac{1}{4}\right)$
C
$\left(\frac{1}{4}, \frac{9}{4}\right)$
D
$\left(\frac{-1}{4}, \frac{9}{4}\right)$
2
KCET 2017
MCQ (Single Correct Answer)
+1
-0
If $a$ and $\mathbf{b}$ are unit vectors, then angle between $\mathbf{a}$ and $\mathbf{b}$ for $\sqrt{3} \mathbf{a}-\mathbf{b}$ to be unit vector is
A
$45^{\circ}$
B
$60^{\circ}$
C
$90^{\circ}$
D
$30^{\circ}$
3
KCET 2017
MCQ (Single Correct Answer)
+1
-0
If $\mathbf{a}=2 \hat{\mathbf{i}}+\lambda \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\mathbf{b}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ are orthogonal, then value of $\lambda$ is
A
$3 / 2$
B
1
C
0
D
$-5 / 2$
4
KCET 2017
MCQ (Single Correct Answer)
+1
-0
If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are unit vectors such that $a+b+c=0$, then the value of $\mathbf{a} \cdot \mathbf{b}+\mathbf{b} \cdot \mathbf{c}+\mathbf{c} \cdot \mathbf{a}$ is equal to
A
$3 / 2$
B
1
C
3
D
$-3 / 2$
KCET Subjects
EXAM MAP