1
KCET 2020
MCQ (Single Correct Answer)
+1
-0

$$\lim _\limits{x \rightarrow 0}\left(\frac{\tan x}{\sqrt{2 x+4}-2}\right) \text { is equal to }$$

A
2
B
3
C
4
D
6
2
KCET 2020
MCQ (Single Correct Answer)
+1
-0

If $$f(x)=\left\{\begin{array}{cc}\frac{1-\cos K x}{x \sin x}, & \text { if } x \neq 0 \\ \frac{1}{2}, & \text { if } x=0\end{array}\right.$$ is continuous at $$x=0$$, then the value of $$K$$ is

A
$$\pm \frac{1}{2}$$
B
0
C
$$\pm 2$$
D
$$\pm 1$$
3
KCET 2019
MCQ (Single Correct Answer)
+1
-0

If $$f(x)=\left\{\begin{array}{cl}\frac{\sin 3 x}{e^{2 x}-1} ; & x \neq 0 \\ k-2 ; & x=0\end{array}\right.$$ is continuous at $$x=0$$, then $$k=$$

A
$$\frac{1}{2}$$
B
$$\frac{3}{2}$$
C
$$\frac{2}{3}$$
D
$$\frac{9}{5}$$
4
KCET 2019
MCQ (Single Correct Answer)
+1
-0

$$\sum_\limits{r=1}^n(2 r-1)=x$$ then, $$ \lim _\limits{n \rightarrow \infty}\left[\frac{1^3}{x^2}+\frac{2^3}{x^2}+\frac{3^3}{x^2}+\ldots+\frac{n^3}{x^2}\right]=$$

A
1
B
$$\frac{1}{2}$$
C
4
D
$$\frac{1}{4}$$
KCET Subjects
EXAM MAP