1
KCET 2023
MCQ (Single Correct Answer)
+1
-0

Let $$f: R \rightarrow R$$ be defined by $$f(x)=3 x^2-5$$ and $$g: R \rightarrow R$$ by $$g(x)=\frac{x}{x^2+1}$$, then $$g \circ f$$ is

A
$$\frac{3 x^2-5}{9 x^4-6 x^2+26}$$
B
$$\frac{3 x^2}{x^4+2 x^2-4}$$
C
$$\frac{3 x^2}{9 x^4+30 x^2-2}$$
D
$$\frac{3 x^2-5}{9 x^4-30 x^2+26}$$
2
KCET 2023
MCQ (Single Correct Answer)
+1
-0

Let $$f(x)=\sin 2 x+\cos 2 x$$ and $$g(x)=x^2-1$$ then $$g(f(x))$$ is invertible in the domain

A
$$x \in\left[\frac{-\pi}{8}, \frac{\pi}{8}\right]$$
B
$$x \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$
C
$$x \in\left[0, \frac{\pi}{4}\right]$$
D
$$x \in\left[\frac{-\pi}{4}, \frac{\pi}{4}\right]$$
3
KCET 2023
MCQ (Single Correct Answer)
+1
-0

If the function is $$f(x)=\frac{1}{x+2}$$, then the point of discontinuity of the composite function $$y=f(f(x))$$ is

A
$$\frac{5}{2}$$
B
$$\frac{2}{5}$$
C
$$\frac{1}{2}$$
D
$$\frac{-5}{2}$$
4
KCET 2022
MCQ (Single Correct Answer)
+1
-0

The domain of the function $$f(x)=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2}$$ is

A
$$[-2,0) \cap(0,1)$$
B
$$[-2,1)$$
C
$$[-2,0)$$
D
$$[-2,0) \cup(0,1)$$
KCET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12