1
KCET 2024
MCQ (Single Correct Answer)
+1
-0

If $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ are three non-coplanar vectors and $p, q$ and $r$ are vectors defined by $\mathbf{p}=\frac{\mathbf{a} \times \mathbf{c}}{[\mathbf{a b c}]}, \mathbf{q}=\frac{\mathbf{c} \times \mathbf{a}}{[\mathbf{a b c} \mathbf{b}}, \mathbf{r}=\frac{\mathbf{a} \times \mathbf{b}}{[\mathbf{a} \mathbf{b}]}$, then $(\mathbf{a}+\mathbf{b}) \cdot \mathbf{p}+(\mathbf{b}+\mathbf{c}) \cdot \mathbf{q}+(\mathbf{c}+\mathbf{a}) \cdot \mathbf{r}$ is

A
0
B
1
C
2
D
3
2
KCET 2023
MCQ (Single Correct Answer)
+1
-0

$$|\mathbf{a} \times \mathbf{b}|^2+|\mathbf{a} \cdot \mathbf{b}|^2=144$$ and $$|\mathbf{a}|=4$$, then $$|\mathbf{b}|$$ is equal to

A
3
B
8
C
4
D
12
3
KCET 2023
MCQ (Single Correct Answer)
+1
-0

If $$\mathbf{a}+2 \mathbf{b}+3 \mathbf{c}=0$$ and $$(\mathbf{a} \times \mathbf{b})+(\mathbf{b} \times \mathbf{c})+(\mathbf{c} \times \mathbf{a})=\lambda(\mathbf{b} \times \mathbf{c})$$, then the value of $$\lambda$$ is equal to

A
3
B
4
C
6
D
2
4
KCET 2023
MCQ (Single Correct Answer)
+1
-0

If $$|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$$, then

A
$$\vec{a}$$ and $$\vec{b}$$ are parallel.
B
$$\vec{a}$$ and $$\vec{b}$$ are coincident.
C
inclined to each other at $$60^{\circ}$$.
D
$$\vec{a}$$ and $$\vec{b}$$ are perpendicular.
KCET Subjects
EXAM MAP