Consider the following statements :
Statement (I) : If either $|\vec{a}|=0$ or $|\vec{b}|=0$, then $\vec{a} \cdot \vec{b}=0$
Statement (II) : If $\vec{a} \times \vec{b}=\overrightarrow{0}$, then a is perpendicular to $b$. Which of the following is correct?
The vectors $\mathbf{A B}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{k}}$ and $\mathbf{A C}=5 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ are the sides of a $\triangle A B C$, The length of the median through $A$ is
The volume of the parallelopiped whose co terminous edges are $\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+\hat{\mathbf{j}}$ is
Let $\mathbf{a}$ and $\mathbf{b}$ be two unit vectors and $\theta$ is the angle between them. Then, $\mathbf{a}+\mathbf{b}$ is a unit vector, if