1
KCET 2022
MCQ (Single Correct Answer)
+1
-0

If $$A_n=\left[\begin{array}{cc}1-n & n \\ n & 1-n\end{array}\right]$$, then $$\left|A_1\right|+\left|A_2\right|+\ldots .\left|A_{2021}\right|=$$

A
$$-2021$$
B
$$-(2021)^2$$
C
$$(2021)^2$$
D
$$4042$$
2
KCET 2021
MCQ (Single Correct Answer)
+1
-0

If $$A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & 3\end{array}\right]$$

$$ B=\left[\begin{array}{ll}2 & 1 \\ 3 & 2 \\ 1 & 1\end{array}\right]$$, then $$(A B)^{\prime}$$ is equal to

A
$$\left[\begin{array}{cc}-3 & -2 \\ 10 & 7\end{array}\right]$$
B
$$\left[\begin{array}{cc}-3 & 10 \\ -2 & 7\end{array}\right]$$
C
$$\left[\begin{array}{ll}-3 & 7 \\ 10 & 2\end{array}\right]$$
D
$$\left[\begin{array}{cc}-3 & 7 \\ 10 & -2\end{array}\right]$$
3
KCET 2021
MCQ (Single Correct Answer)
+1
-0

Let $$M$$ be $$2 \times 2$$ symmetric matrix with integer entries, then $$M$$ is invertible if

A
the first column of $$M$$ is the transpose of second row of $$M$$.
B
the second row of $$M$$ is the transpose of first column of $$M$$.
C
$$M$$ is diagonal matrix with non-zero entries in the principal diagonal.
D
The product of entries in the principal diagonal of $$M$$ is the product of entries in the other diagonal.
4
KCET 2021
MCQ (Single Correct Answer)
+1
-0

If $$A$$ and $$B$$ are matrices of order 3 and $$|A|=5,|B|=3$$, then $$|3 A B|$$ is

A
425
B
405
C
565
D
585
KCET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12