1
KCET 2020
MCQ (Single Correct Answer)
+1
-0

If $$a_1 a_2 a_3 \ldots a_9$$ are in AP, then the value of $$\left|\begin{array}{lll}a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9\end{array}\right|$$ is

A
$$\frac{9}{2}\left(a_1+a_9\right)$$
B
$$\left(a_1+a_9\right)$$
C
$$\log _e\left(\log _e e\right)$$
D
1
2
KCET 2019
MCQ (Single Correct Answer)
+1
-0

The inverse of the matrix $$\left[\begin{array}{ccc}2 & 5 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 3\end{array}\right]$$ is

A
$$\left[\begin{array}{ccc}3 & -15 & 5 \\ -1 & 6 & -2 \\ 1 & -5 & 2\end{array}\right]$$
B
$$\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$$
C
$$\left[\begin{array}{ccc}3 & -15 & 5 \\ -1 & 6 & -2 \\ 1 & -5 & -2\end{array}\right]$$
D
$$\left[\begin{array}{ccc}3 & -5 & 5 \\ -1 & -6 & -2 \\ 1 & -5 & 2\end{array}\right]$$
3
KCET 2019
MCQ (Single Correct Answer)
+1
-0

If $$P$$ and $$Q$$ are symmetric matrices of the same order then $$P Q-Q P$$ is

A
zero matrix
B
identity matrix
C
skew-symmetric matrix
D
symmetric matrix
4
KCET 2019
MCQ (Single Correct Answer)
+1
-0

If $$3 A+4 B^{\prime}=\left[\begin{array}{ccc}7 & -10 & 17 \\ 0 & 6 & 31\end{array}\right]$$ and $$2 B+3 A^{\prime}\left[\begin{array}{cc}-1 & 18 \\ 4 & 0 \\ -5 & -7\end{array}\right]$$ then $$B=$$

A
$$\left[\begin{array}{cc}-1 & -18 \\ 4 & -16 \\ -5 & -7\end{array}\right]$$
B
$$\left[\begin{array}{cc}1 & 3 \\ -1 & 1 \\ 2 & 4\end{array}\right]$$
C
$$\left[\begin{array}{cc}1 & 3 \\ -1 & 1 \\ 2 & -4\end{array}\right]$$
D
$$\left[\begin{array}{cc}1 & -3 \\ -1 & 1 \\ 2 & 4\end{array}\right]$$
KCET Subjects
EXAM MAP