1
KCET 2020
MCQ (Single Correct Answer)
+1
-0

If $$a_1 a_2 a_3 \ldots a_9$$ are in AP, then the value of $$\left|\begin{array}{lll}a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9\end{array}\right|$$ is

A
$$\frac{9}{2}\left(a_1+a_9\right)$$
B
$$\left(a_1+a_9\right)$$
C
$$\log _e\left(\log _e e\right)$$
D
1
2
KCET 2019
MCQ (Single Correct Answer)
+1
-0

The inverse of the matrix $$\left[\begin{array}{ccc}2 & 5 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 3\end{array}\right]$$ is

A
$$\left[\begin{array}{ccc}3 & -15 & 5 \\ -1 & 6 & -2 \\ 1 & -5 & 2\end{array}\right]$$
B
$$\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$$
C
$$\left[\begin{array}{ccc}3 & -15 & 5 \\ -1 & 6 & -2 \\ 1 & -5 & -2\end{array}\right]$$
D
$$\left[\begin{array}{ccc}3 & -5 & 5 \\ -1 & -6 & -2 \\ 1 & -5 & 2\end{array}\right]$$
3
KCET 2019
MCQ (Single Correct Answer)
+1
-0

If $$P$$ and $$Q$$ are symmetric matrices of the same order then $$P Q-Q P$$ is

A
zero matrix
B
identity matrix
C
skew-symmetric matrix
D
symmetric matrix
4
KCET 2019
MCQ (Single Correct Answer)
+1
-0

If $$3 A+4 B^{\prime}=\left[\begin{array}{ccc}7 & -10 & 17 \\ 0 & 6 & 31\end{array}\right]$$ and $$2 B+3 A^{\prime}\left[\begin{array}{cc}-1 & 18 \\ 4 & 0 \\ -5 & -7\end{array}\right]$$ then $$B=$$

A
$$\left[\begin{array}{cc}-1 & -18 \\ 4 & -16 \\ -5 & -7\end{array}\right]$$
B
$$\left[\begin{array}{cc}1 & 3 \\ -1 & 1 \\ 2 & 4\end{array}\right]$$
C
$$\left[\begin{array}{cc}1 & 3 \\ -1 & 1 \\ 2 & -4\end{array}\right]$$
D
$$\left[\begin{array}{cc}1 & -3 \\ -1 & 1 \\ 2 & 4\end{array}\right]$$
KCET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12