1
KCET 2025
MCQ (Single Correct Answer)
+1
-0

If $A$ is a square matrix satisfying the equation $A^2-5 A+7 I=0$, where $I$ is the $I$ dentity matrix and 0 is null matrix of same order, then $A^{-1}=$

A
$\frac{1}{7}(5 \mathrm{I}-\mathrm{A})$
B
$\frac{1}{7}(\mathrm{~A}-5 \mathrm{I})$
C
$7(5 \mathrm{I}-\mathrm{A})$
D
$\frac{1}{5}(7 \mathrm{I}-\mathrm{A})$
2
KCET 2025
MCQ (Single Correct Answer)
+1
-0
If $A$ is a square matrix of order $3 \times 3, \operatorname{det} A=3$, then the value of $\operatorname{det}\left(3 A^{-1}\right)$ is
A
$\frac{1}{3}$
B
3
C
27
D
9
3
KCET 2025
MCQ (Single Correct Answer)
+1
-0
If $B=\left[\begin{array}{ll}1 & 3 \\ 1 & \alpha\end{array}\right]$ be the adjoint of a matrix $A$ and $|A|=2$, then the value of $\alpha$ is
A
4
B
5
C
2
D
3
4
KCET 2024
MCQ (Single Correct Answer)
+1
-0

If $A$ is a square matrix, such that $A^2=A$, then $(I+A)^3$ is equal to

A
$A-I$
B
$7 A$
C
$7 A+I$
D
$I-7 A$
KCET Subjects
EXAM MAP