1
KCET 2021
MCQ (Single Correct Answer)
+1
-0

Domain of the function

$$f(x)=\frac{1}{\sqrt{\left[x^2\right]-[x]-6}},$$

where $$[x]$$ is greatest integer $$\leq x$$ is

A
$$(-\infty,-2) \cup[4, \infty)$$
B
$$(-\infty,-2 \cup[3, \infty]$$
C
$$[-\infty,-2] \cup[4, \infty]$$
D
$$[-\infty,-2] \cup[3, \infty)$$
2
KCET 2020
MCQ (Single Correct Answer)
+1
-0

Let $$f:[2, \infty) \rightarrow R$$ be the function defined $$f(x)=x^2-4 x+5$$, then the ranges of $$f$$ is

A
$$(-\infty, \infty)$$
B
$$[1, \infty)$$
C
$$(1, \infty)$$
D
$$[5, \infty)$$
3
KCET 2019
MCQ (Single Correct Answer)
+1
-0

$$f: R \rightarrow R$$ and $$g:[0, \infty) \rightarrow R$$ is defined by $$f(x)=x^2$$ and $$g(x)=\sqrt{x}$$. Which one of the following is not true?

A
$$f \circ g(2)=2$$
B
$$g \circ f(4)=4$$
C
$$g \circ f(-2)=2$$
D
$$f \circ g(-4)=4$$
4
KCET 2019
MCQ (Single Correct Answer)
+1
-0

If $$|3 x-5| \leq 2$$ then

A
$$1 \leq x \leq \frac{9}{3}$$
B
$$-1 \leq x \leq \frac{7}{3}$$
C
$$-1 \leq x \leq \frac{9}{3}$$
D
$$1 \leq x \leq \frac{7}{3}$$
KCET Subjects
EXAM MAP