1
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$(2+\sin x) \frac{\mathrm{d} y}{\mathrm{~d} x}+(y+1) \cos x=0$$ and $$y(0)=1$$, then $$y\left(\frac{\pi}{2}\right)$$ is

A
$$\frac{-2}{3}$$
B
$$\frac{-1}{3}$$
C
$$\frac{4}{3}$$
D
$$\frac{1}{3}$$
2
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$A=\left[\begin{array}{cc}2 a & -3 b \\ 3 & 2\end{array}\right]$$ and $$A \cdot \operatorname{adj} A=A A^T$$, then $$2 a+3 b$$ is

A
$$-$$1
B
1
C
5
D
$$-$$5
3
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int\left(\frac{\tan \left(\frac{1}{x}\right)}{x}\right)^2 d x=$$

A
$$x-\tan x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration
B
$$\frac{1}{x}-\tan \left(\frac{1}{x}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\frac{1}{x}+\tan \left(\frac{1}{x}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$x+\tan x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
4
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{1}{(x+2)(1+x)^2} d x$$ has the value

A
$$2 \log \left(\frac{x+2}{x^2+1}\right)+4 \tan ^{-1} x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\log \frac{x+2}{x^2+1}-4 \tan ^{-1} x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\log \frac{(x+2)^2}{\left(x^2+1\right)}+4 \tan ^{-1} x+c$$, where c is a constant of integration.
D
None
MHT CET Papers
EXAM MAP