1
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$A=\left[\begin{array}{cc}2 a & -3 b \\ 3 & 2\end{array}\right]$$ and $$A \cdot \operatorname{adj} A=A A^T$$, then $$2 a+3 b$$ is

A
$$-$$1
B
1
C
5
D
$$-$$5
2
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int\left(\frac{\tan \left(\frac{1}{x}\right)}{x}\right)^2 d x=$$

A
$$x-\tan x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration
B
$$\frac{1}{x}-\tan \left(\frac{1}{x}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\frac{1}{x}+\tan \left(\frac{1}{x}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$x+\tan x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
3
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{1}{(x+2)(1+x)^2} d x$$ has the value

A
$$2 \log \left(\frac{x+2}{x^2+1}\right)+4 \tan ^{-1} x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\log \frac{x+2}{x^2+1}-4 \tan ^{-1} x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\log \frac{(x+2)^2}{\left(x^2+1\right)}+4 \tan ^{-1} x+c$$, where c is a constant of integration.
D
None
4
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If two angles of $$\triangle \mathrm{ABC}$$ are $$\frac{\pi}{4}$$ and $$\frac{\pi}{3}$$, then the ratio of the smallest and greatest sides are

A
$$(\sqrt{3}-1): 1$$
B
$$\sqrt{3}: \sqrt{5}$$
C
$$\sqrt{2}: \sqrt{3}$$
D
$$(\sqrt{3}-1): 4$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12