1
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the line, passing through $$(1,2,3)$$ and parallel to planes $$x-y+2 z=5$$ and $$3 x+y+z=6$$, is

A
$$\frac{x-1}{-3}=\frac{y-2}{5}=\frac{z-3}{4}$$
B
$$\frac{x-1}{-3}=\frac{y-2}{-5}=\frac{z-3}{4}$$
C
$$\frac{x-1}{4}=\frac{y-2}{5}=\frac{z-3}{3}$$
D
$$\frac{x-1}{5}=\frac{y-2}{7}=\frac{z-3}{1}$$
2
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{x \rightarrow 0} \frac{x \cot 4 x}{\sin ^2 x \cdot \cot ^2(2 x)} \text { is equal to }$$

A
0
B
1
C
4
D
$$\frac{1}{4}$$
3
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{1}{\cos ^3 x \sqrt{\sin 2 x}} d x=$$

A
$$\sqrt{2}\left(\sqrt{\tan x}+\frac{1}{5}(\tan x)^{\frac{5}{2}}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\left(\sqrt{\tan x}+\frac{2}{5}(\tan x)^{\frac{5}{2}}\right)+c$$, where c is a constant of integration.
C
$$\frac{1}{\sqrt{2}}\left(\sqrt{\tan x}+\frac{2}{5}(\tan x)^{\frac{5}{2}}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$2\left(\sqrt{\tan x}+\frac{1}{5}(\tan x)^{\frac{5}{2}}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
4
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The shortest distance (in units) between the lines $$\frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$$ and $$\bar{r}=(2 \hat{i}-2 \hat{j}+3 \hat{k})+\lambda(\hat{i}+2 \hat{j})$$ is

A
$$\frac{8}{3 \sqrt{5}}$$
B
$$\frac{1}{3 \sqrt{5}}$$
C
$$\frac{7}{3 \sqrt{5}}$$
D
$$\frac{2}{3 \sqrt{5}}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12