1
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{f}(x)=\sin ^{-1}\left(\frac{2 \log x}{1+(\log x)^2}\right)$$, then $$\mathrm{f}^{\prime}(\mathrm{e})$$ is

A
$$\frac{2}{\mathrm{e}}$$
B
$$\frac{1}{2 \mathrm{e}}$$
C
$$\mathrm{e}$$
D
$$\frac{1}{\mathrm{e}}$$
2
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the pair of lines given by $$(x \cos \alpha+y \sin \alpha)^2=\left(x^2+y^2\right) \sin ^2 \alpha$$ are perpendicular to each other, then $$\alpha$$ is

A
0
B
$$\frac{\pi}{2}$$
C
$$\frac{\pi}{4}$$
D
$$\frac{\pi}{6}$$
3
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution of $$\mathrm{e}^{y-x} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y(\sin x+\cos x)}{(1+y \log y)}$$ is

A
$$\frac{\mathrm{e}^y}{y}=\mathrm{e}^x \sin x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\mathrm{e}^y \log y=\mathrm{e}^x \cos x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\mathrm{e}^y \log y=\mathrm{e}^x \sin x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$\mathrm{e}^y y=\mathrm{e}^x \sin x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
4
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For $$x>1$$, if $$(2 x)^{2 y}=4 \mathrm{e}^{2 x-2 y}$$, then $$\left(1+\log _e 2 x\right)^2 \frac{d y}{d x}$$ is equal to

A
$$\frac{x \log _{\mathrm{e}} 2 x+\log _{\mathrm{e}} 2}{x}$$
B
$$\frac{x \log _e 2 x-\log _e 2}{x}$$
C
$$x \log _{\mathrm{e}} 2 x+\frac{\log _{\mathrm{e}} 2}{x}$$
D
$$x \log _e 2 x-\frac{\log _e 2}{2}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12