Two resistance $$\mathrm{X}$$ and $$\mathrm{Y}$$ are connected in the two gaps of a meterbridge and the null points is obtained at $$20 \mathrm{~cm}$$ from zero end. When the resistance of $$20 \Omega$$ is connected in series with the smaller of the two resistance $$\mathrm{X}$$ and $$\mathrm{Y}$$, the null point shifts to $$40 \mathrm{~cm}$$ from left end. The value of smaller resistance in ohm is
Three point charges $$\mathrm{+Q,+2q}$$ and $$+\mathrm{q}$$ are placed at the vertices of a right angled isosceles triangle. The net electrostatic potential energy of the configuration is zero, if $$Q$$ is equal to
Resistor of $$2\Omega$$, inductor of $$100 \mu \mathrm{H}$$ and capacitor of $$400 \mathrm{pF}$$ are connected in series across a source of $$\mathrm{e}_{\mathrm{rms}}=0.1$$ Volt. At resonance, voltage drop across inductor is
An electron makes a full rotation in a circle of radius $$0.8 \mathrm{~m}$$ in one second. The magnetic field at the centre of the circle is $$\left(\mu_0=4 \pi \times 10^{-7}\right.$$ SI units)