1
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $$\int_\limits0^\pi\left|\sin x-\frac{2 x}{\pi}\right| \mathrm{d} x$$ is

A
$$\frac{\pi}{4}$$
B
$$\frac{\pi}{2}$$
C
$$\pi$$
D
$$2 \pi$$
2
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{f}(x)=\sin ^{-1}\left(\frac{2 \log x}{1+(\log x)^2}\right)$$, then $$\mathrm{f}^{\prime}(\mathrm{e})$$ is

A
$$\frac{2}{\mathrm{e}}$$
B
$$\frac{1}{2 \mathrm{e}}$$
C
$$\mathrm{e}$$
D
$$\frac{1}{\mathrm{e}}$$
3
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the pair of lines given by $$(x \cos \alpha+y \sin \alpha)^2=\left(x^2+y^2\right) \sin ^2 \alpha$$ are perpendicular to each other, then $$\alpha$$ is

A
0
B
$$\frac{\pi}{2}$$
C
$$\frac{\pi}{4}$$
D
$$\frac{\pi}{6}$$
4
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution of $$\mathrm{e}^{y-x} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y(\sin x+\cos x)}{(1+y \log y)}$$ is

A
$$\frac{\mathrm{e}^y}{y}=\mathrm{e}^x \sin x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\mathrm{e}^y \log y=\mathrm{e}^x \cos x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\mathrm{e}^y \log y=\mathrm{e}^x \sin x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$\mathrm{e}^y y=\mathrm{e}^x \sin x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
MHT CET Papers
EXAM MAP