1
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Water flows from the base of rectangular tank, of depth 16 meters. The rate of flow of the water is proportional to the square root of depth at any time $$\mathrm{t}$$. If depth is $$4 \mathrm{~m}$$ when $$\mathrm{t}=2$$ hours, then after 3.5 hours the depth (in meters) is

A
0
B
0.25
C
0.5
D
3
2
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The area (in sq. units) of the smaller part of the circle $$x^2+y^2=\mathrm{a}^2$$ cut off by the line $$x=\frac{\mathrm{a}}{\sqrt{2}}$$ is

A
$$\frac{\mathrm{a}^2}{4}\left|\frac{\pi}{2}-1\right|$$
B
$$a^2\left|\frac{\pi}{4}-1\right|$$
C
$$\frac{\mathrm{a}^2}{2}\left|\frac{\pi}{2}-1\right|$$
D
$$\frac{\mathrm{a}^2}{4}\left|\frac{\pi}{4}-1\right|$$
3
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\cos ^2 48^{\circ}-\sin ^2 12^{\circ}=$$ _________, if $$\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}$$

A
$$\frac{-\sqrt{5}+1}{8}$$
B
$$\frac{\sqrt{5}-1}{8}$$
C
$$\frac{\sqrt{5}+1}{8}$$
D
$$\frac{-\sqrt{5}-1}{8}$$
4
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The discrete random variable $$\mathrm{X}$$ can take all possible integer values from 1 to $$\mathrm{k}$$, each with a probability $$\frac{1}{\mathrm{k}}$$, then its variance is

A
$$\frac{\mathrm{k}^2-1}{12}$$
B
$$\frac{\mathrm{k}^2-1}{6}$$
C
$$\frac{\mathrm{k}^2+1}{12}$$
D
$$\frac{\mathrm{k}^2+1}{6}$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12