1
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Water flows from the base of rectangular tank, of depth 16 meters. The rate of flow of the water is proportional to the square root of depth at any time $$\mathrm{t}$$. If depth is $$4 \mathrm{~m}$$ when $$\mathrm{t}=2$$ hours, then after 3.5 hours the depth (in meters) is

A
0
B
0.25
C
0.5
D
3
2
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The area (in sq. units) of the smaller part of the circle $$x^2+y^2=\mathrm{a}^2$$ cut off by the line $$x=\frac{\mathrm{a}}{\sqrt{2}}$$ is

A
$$\frac{\mathrm{a}^2}{4}\left|\frac{\pi}{2}-1\right|$$
B
$$a^2\left|\frac{\pi}{4}-1\right|$$
C
$$\frac{\mathrm{a}^2}{2}\left|\frac{\pi}{2}-1\right|$$
D
$$\frac{\mathrm{a}^2}{4}\left|\frac{\pi}{4}-1\right|$$
3
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\cos ^2 48^{\circ}-\sin ^2 12^{\circ}=$$ _________, if $$\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}$$

A
$$\frac{-\sqrt{5}+1}{8}$$
B
$$\frac{\sqrt{5}-1}{8}$$
C
$$\frac{\sqrt{5}+1}{8}$$
D
$$\frac{-\sqrt{5}-1}{8}$$
4
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The discrete random variable $$\mathrm{X}$$ can take all possible integer values from 1 to $$\mathrm{k}$$, each with a probability $$\frac{1}{\mathrm{k}}$$, then its variance is

A
$$\frac{\mathrm{k}^2-1}{12}$$
B
$$\frac{\mathrm{k}^2-1}{6}$$
C
$$\frac{\mathrm{k}^2+1}{12}$$
D
$$\frac{\mathrm{k}^2+1}{6}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12