1
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\int \frac{\sqrt{1-x^2}}{x^4} \mathrm{~d} x=\mathrm{A}(x)\left(\sqrt{1-x^2}\right)^{\mathrm{m}}+\mathrm{c}$$ for a suitable chosen integer $$\mathrm{m}$$ and a function $$\mathrm{A}(x)$$, where $$\mathrm{c}$$ is a constant of integration, then $$(\mathrm{A}(x))^{\mathrm{m}}$$ equals

A
$$\frac{1}{9 x^4}$$
B
$$\frac{-1}{3 x^3}$$
C
$$\frac{-1}{27 x^9}$$
D
$$\frac{1}{27 x^6}$$
2
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{k}_{\mathrm{i}}$$ are possible values of $$\mathrm{k}$$ for which lines $$\mathrm{k} x+2 y+2=0,2 x+\mathrm{k} y+3=0$$ and $$3 x+3 y+\mathrm{k}=0$$ are concurrent, then $$\sum \mathrm{k}_{\mathrm{i}}$$ has the value

A
0
B
$$-$$2
C
2
D
5
3
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A tank with a rectangular base and rectangular sides, open at the top is to be constructed so that its depth is 4 meter and volume is 36 cubic meters. If building of the tank costs ₹ 100 per square meter for the base and ₹ 50 per square meter for the sides, then the cost of least expensive tank is

A
₹ 3000
B
₹ 3300
C
₹ 2400
D
₹ 3500
4
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The length (in units) of the projection of the line segment, joining the points $$(5,-1,4)$$ and $$(4,-1,3)$$, on the plane $$x+y+z=7$$ is

A
$$\frac{2}{\sqrt{3}}$$
B
$$\frac{2}{3}$$
C
$$\frac{\sqrt{2}}{3}$$
D
$$\sqrt{\frac{2}{3}}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12