1
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int_\limits0^{\frac{\pi}{2}} \log \left[\sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}\right] d x=$$

A
1
B
$$\frac{\pi}{4}$$
C
0
D
$$\frac{\pi}{8}$$
2
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$[\vec{a}\ \vec{b}\ \vec{c}\ ] \neq 0$$, then $$\frac{[\vec{a}\ +\vec{b}\ \vec{b}\ +\vec{c}\ \vec{c}\ +\vec{a}\ ]}{[\vec{b}\ \vec{c}\ \vec{a}\ ]}=$$

A
1
B
0
C
4
D
2
3
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The cartesian co-ordinates of the point on the parabola $$y^2=x$$ whose parameter is $$-\frac{4}{3}$$ are

A
$$\left(\frac{4}{9}, \frac{4}{3}\right)$$
B
$$\left(\frac{4}{9},-\frac{2}{3}\right)$$
C
$$\left(\frac{4}{3}, \frac{4}{9}\right)$$
D
$$\left(\frac{4}{3},-\frac{4}{3}\right)$$
4
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The angle between the line $$r =(\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}})+\lambda(3 \hat{\mathbf{i}}+\hat{\mathbf{j}})$$ and the plane $$\mathbf{r} \cdot(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})=8$$ is

A
$$\sin ^{-1}\left(\frac{2 \sqrt{7}}{\sqrt{5}}\right)$$
B
$$\sin ^{-1}\left(\frac{\sqrt{5}}{2 \sqrt{7}}\right)$$
C
$$\sin ^{-1}\left(\frac{3 \sqrt{7}}{\sqrt{5}}\right)$$
D
$$\sin ^{-1}\left(\frac{\sqrt{7}}{3 \sqrt{5}}\right)$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12