1
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \cot x \cdot \log [\log (\sin x)] d x=$$

A
$$\log (\sin x)[\log (\log (\sin x))-1]+c$$
B
$$\log (\sin x)[\log (\log (\sin x))+1]+c$$
C
$$\log (\sin x)[\log (\sin x))+1]+c$$
D
$$\log (\sin x)[\log (\sin x)-1]+c$$
2
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\sin \theta=-\frac{12}{13}, \cos \phi=-\frac{4}{5}$$ and $$\theta, \phi$$ lie in the third quadrant, then $$\tan (\theta-\phi)=$$

A
$$-\frac{56}{33}$$
B
$$\frac{33}{56}$$
C
$$-\frac{33}{56}$$
D
$$\frac{56}{33}$$
3
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The symbolic form of the following circuit is (where $$p, q$$ represents switches $$S_1$$ and $$s_2$$ closed respectively)

MHT CET 2020 16th October Morning Shift Mathematics - Mathematical Reasoning Question 52 English

A
$$(p \wedge q) \wedge(\sim p \wedge \sim q) \equiv I$$
B
$$p \wedge[q \wedge(\sim p \wedge \sim q) \equiv I$$
C
$$(p \vee q) \vee(\sim p \wedge \sim q) \equiv I$$
D
$$p \vee[q \wedge(\sim p \wedge \sim q) \equiv I$$
4
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of all lines perpendicular to the line $$5 x+2 y+7=0$$ is

A
$$2 d y-5 d x=0$$
B
$$5 d y-2 d x=0$$
C
$$2 d y-3 d x=0$$
D
$$3 d y-2 d x=0$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12