1
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \cot x \cdot \log [\log (\sin x)] d x=$$

A
$$\log (\sin x)[\log (\log (\sin x))-1]+c$$
B
$$\log (\sin x)[\log (\log (\sin x))+1]+c$$
C
$$\log (\sin x)[\log (\sin x))+1]+c$$
D
$$\log (\sin x)[\log (\sin x)-1]+c$$
2
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\sin \theta=-\frac{12}{13}, \cos \phi=-\frac{4}{5}$$ and $$\theta, \phi$$ lie in the third quadrant, then $$\tan (\theta-\phi)=$$

A
$$-\frac{56}{33}$$
B
$$\frac{33}{56}$$
C
$$-\frac{33}{56}$$
D
$$\frac{56}{33}$$
3
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The symbolic form of the following circuit is (where $$p, q$$ represents switches $$S_1$$ and $$s_2$$ closed respectively)

MHT CET 2020 16th October Morning Shift Mathematics - Mathematical Reasoning Question 58 English

A
$$(p \wedge q) \wedge(\sim p \wedge \sim q) \equiv I$$
B
$$p \wedge[q \wedge(\sim p \wedge \sim q) \equiv I$$
C
$$(p \vee q) \vee(\sim p \wedge \sim q) \equiv I$$
D
$$p \vee[q \wedge(\sim p \wedge \sim q) \equiv I$$
4
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of all lines perpendicular to the line $$5 x+2 y+7=0$$ is

A
$$2 d y-5 d x=0$$
B
$$5 d y-2 d x=0$$
C
$$2 d y-3 d x=0$$
D
$$3 d y-2 d x=0$$
MHT CET Papers
EXAM MAP