1
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of all lines perpendicular to the line $$5 x+2 y+7=0$$ is

A
$$2 d y-5 d x=0$$
B
$$5 d y-2 d x=0$$
C
$$2 d y-3 d x=0$$
D
$$3 d y-2 d x=0$$
2
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int_\limits0^{\frac{\pi}{2}} \log \left[\sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}\right] d x=$$

A
1
B
$$\frac{\pi}{4}$$
C
0
D
$$\frac{\pi}{8}$$
3
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$[\vec{a}\ \vec{b}\ \vec{c}\ ] \neq 0$$, then $$\frac{[\vec{a}\ +\vec{b}\ \vec{b}\ +\vec{c}\ \vec{c}\ +\vec{a}\ ]}{[\vec{b}\ \vec{c}\ \vec{a}\ ]}=$$

A
1
B
0
C
4
D
2
4
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The cartesian co-ordinates of the point on the parabola $$y^2=x$$ whose parameter is $$-\frac{4}{3}$$ are

A
$$\left(\frac{4}{9}, \frac{4}{3}\right)$$
B
$$\left(\frac{4}{9},-\frac{2}{3}\right)$$
C
$$\left(\frac{4}{3}, \frac{4}{9}\right)$$
D
$$\left(\frac{4}{3},-\frac{4}{3}\right)$$
MHT CET Papers
EXAM MAP