1
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is

A
5
B
0
C
4
D
2
2
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$A=\left[\begin{array}{rrr}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$$ and $$A^{-1}=\left[\begin{array}{rrr}3 & -1 & 1 \\ \alpha & 6 & -5 \\ \beta & -2 & 2\end{array}\right]$$, then the values of $$\alpha$$ and $$\beta$$ are, respectively.

A
$$-15,-5$$
B
$$-15,5$$
C
$$15,-5$$
D
$$15,5$$
3
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation obtained from the function $$y=a(x-a)^2$$ is

A
$$8 y^2=\left(\frac{d y}{d x}\right)^2\left[x+\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
B
$$4 y^2=\left(\frac{d y}{d x}\right)^2\left[x-\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
C
$$2 y^2=\left(\frac{d y}{d x}\right)^2\left[x-\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
D
$$8 y^2=\left(\frac{d y}{d x}\right)^2\left[x-\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
4
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a quadrilateral $$ABCD, M$$ and $$N$$ are the mid-points of the sides $$A B$$ and $$C D$$ respectively. If $$\mathbf{A D}+\mathbf{B C}=t \mathbf{M N}$$, then $$t=$$

A
2
B
$$\frac{1}{2}$$
C
4
D
$$\frac{3}{2}$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12