1
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation obtained from the function $$y=a(x-a)^2$$ is

A
$$8 y^2=\left(\frac{d y}{d x}\right)^2\left[x+\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
B
$$4 y^2=\left(\frac{d y}{d x}\right)^2\left[x-\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
C
$$2 y^2=\left(\frac{d y}{d x}\right)^2\left[x-\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
D
$$8 y^2=\left(\frac{d y}{d x}\right)^2\left[x-\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
2
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a quadrilateral $$ABCD, M$$ and $$N$$ are the mid-points of the sides $$A B$$ and $$C D$$ respectively. If $$\mathbf{A D}+\mathbf{B C}=t \mathbf{M N}$$, then $$t=$$

A
2
B
$$\frac{1}{2}$$
C
4
D
$$\frac{3}{2}$$
3
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$f(x)=\log (\sec x+\tan x)$$, then $$f^{\prime}\left(\frac{\pi}{4}\right)=$$

A
$$\frac{1}{\sqrt{2}}$$
B
$$\sqrt{2}$$
C
1
D
$$\frac{2}{\sqrt{3}}$$
4
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$f(x)=\frac{2 x+3}{3 x-2}, x \neq \frac{2}{3}$$, then the function $$f$$ of is

A
a constant function
B
an exponential function
C
an even function
D
an identity function
MHT CET Papers
EXAM MAP