1
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+1
-0

For a particle performing SHM when displacement is $$x$$, the potential energy and restoring force acting on it is denoted by $$E$$ and $$F$$, respectively. The relation between $$x, E$$ and $$F$$ is

A
$$\frac{E}{F}+x=0$$
B
$$\frac{2 E}{F}-x=0$$
C
$$\frac{2 E}{F}+x=0$$
D
$$\frac{E}{F}-x=0$$
2
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+1
-0

Surface density of charge on a charged conducting sphere of radius $$R$$ in terms of electric field intensity $$E$$ at a distance $$r$$ in free space is ($$r>R, \varepsilon_0=$$ permittivity of free space)

A
$$\varepsilon_0 E\left(\frac{R}{r}\right)^2$$
B
$$\varepsilon_0 E \frac{R}{r}$$
C
$$\varepsilon_0 E\left(\frac{r}{R}\right)^2$$
D
$$\varepsilon_0 E \frac{r}{R}$$
3
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+1
-0

A body is thrown from the surface of the earth velocity $$\mathrm{v} / \mathrm{s}$$. The maximum height above the earth's surface upto which it will reach is ($$R=$$ radius of earth, $$g=$$ acceleration due to gravity)

A
$$\frac{v R}{2 g R-v}$$
B
$$\frac{2 g A}{v^2(R-1)}$$
C
$$\frac{v R^2}{g R-v}$$
D
$$\frac{v^2 R}{2 g R-v^2}$$
4
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+1
-0

Using Bohr's quantisation condition, what is the rotational energy in the second orbit for a diatomic molecule? ($$I=$$ moment of inertia of diatomic molecule and, $$h=$$ Planck's constant)

A
$$\frac{h}{2 I \pi^2}$$
B
$$\frac{h^2}{2 I \pi^2}$$
C
$$\frac{h^2}{2 I^2 \pi^2}$$
D
$$\frac{h}{2 I^2 \pi}$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12