1
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
Five persons entered the lift cabin on the ground floor of an eight-floor apartment. Suppose that each of them independently and with equal probability, can leave the cabin at any floor beginning with the first floor, then the probability of all five persons leaving at different floors is :
A
$\frac{7}{{ }^7 P_5}$
B
$\frac{{ }^7 P_5}{7^5}$
C
$\frac{5!}{7^5}$
D
$\frac{{ }^7 P_5}{5^7}$
2
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
If $\cos A=\frac{3}{4}$, then $\left(32 \sin \frac{A}{2} \sin \frac{5 A}{2}\right)=$
A
7
B
16
C
11
D
8
3
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
If $A=\frac{1}{\pi}\left[\begin{array}{cc}\sin ^{-1} \frac{1}{2} & \tan ^{-1} \frac{x}{\pi} \\ \sin ^{-1} \frac{x}{\pi} & \cot ^{-1} \sqrt{3}\end{array}\right] \quad B=\frac{1}{\pi}\left[\begin{array}{cc}-\cos ^{-1} \frac{1}{2} & \tan ^{-1} \frac{x}{\pi} \\ \sin ^{-1} \frac{x}{\pi} & -\tan ^{-1} \sqrt{3}\end{array}\right]$ and I is an identity matrix of order $2 \times 2$, then $A-B=$
A
2I
B
$\frac{1}{2}I$
C
I
D
0
4
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
The length of the latus rectum of a conic $49 y^2-16 x^2=784$ is
A
$\frac{49}{2}$
B
$\frac{49}{\sqrt{2}}$
C
$\frac{7}{\sqrt{2}}$
D
$\frac{7}{2}$
EXAM MAP