1
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
The degree of the differential equation $\left[1+\left(\frac{d y}{d x}\right)^2\right]^{\frac{3}{4}}=\left(\frac{d^2 y}{d x^2}\right)^{\frac{1}{3}}$
A
4
B
9
C
6
D
2
2
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
Evaluate the value of $(1.02)^8$ using binomial theorem up to two decimal places.
A
1.17
B
1.18
C
1.81
D
1.71
3
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
$\int \frac{e^{\tan ^{-1} x}}{\left(1+x^2\right)}\left(1+x+x^2\right) d x=$
A
$e^{\tan ^{-1} x}+c$
B
$x e^{\tan ^{-1} x}+c$
C
$\frac{e^{\tan ^{-1} x}}{\left(1+x^2\right)}+c$
D
$\frac{x e^{\tan ^{-1} x}}{\left(1+x^2\right)}+c$
4
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
Which of the following transformations reduce the differential equation $\frac{d z}{d x}+\frac{z}{x} \log z=\frac{z}{x^2}(\log z)^2$ into the form $\frac{d u}{d x}+P(x) u=Q(x)$
A
$u=(\log z)^{-1}$
B
$u=\log x$
C
$u=(\log z)^2$
D
$u=e^x$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12