1
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
$\int\limits_0^{\frac{\pi}{2}} \log \left(\frac{5+4 \sin x}{5+4 \cos x}\right) d x=$
A
0
B
2
C
$-$2
D
$\frac{3}{4}$
2
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
The degree of the differential equation $\left[1+\left(\frac{d y}{d x}\right)^2\right]^{\frac{3}{4}}=\left(\frac{d^2 y}{d x^2}\right)^{\frac{1}{3}}$
A
4
B
9
C
6
D
2
3
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
Evaluate the value of $(1.02)^8$ using binomial theorem up to two decimal places.
A
1.17
B
1.18
C
1.81
D
1.71
4
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
$\int \frac{e^{\tan ^{-1} x}}{\left(1+x^2\right)}\left(1+x+x^2\right) d x=$
A
$e^{\tan ^{-1} x}+c$
B
$x e^{\tan ^{-1} x}+c$
C
$\frac{e^{\tan ^{-1} x}}{\left(1+x^2\right)}+c$
D
$\frac{x e^{\tan ^{-1} x}}{\left(1+x^2\right)}+c$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12