1
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
In a triangle $A B C$ the coordinate of the vertex $A$ is $(1,2)$. Equations of the median through $B$ and $C$ are respectively $x+y=5$ and $x=4$. Then the equation of side $\mathbf{A B}$ is
A
$2 x-3 y+4=0$
B
$2 x+3 y=8$
C
$3 x-2 y+1=0$
D
$3 x+2 y=5$
2
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
The radius of the circle passes through the foci of a conic $\frac{x^2}{16}+\frac{y^2}{9}=1$ and has its centre at $(0,3)$, then the diameter of the circle is ---
A
7 units
B
$2 \sqrt{12}$ units
C
8 units
D
4 units
3
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
If $A=\{1,2,4\} \quad B=\{2,4,5\} \quad C=\{2,5\}$ then $(A-B) \cap(B-C)=$
A
$\{2,4,5\}$
B
$\{1,2,4,5\}$
C
$\emptyset$
D
$\{4,5\}$
4
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
$\int \frac{d x}{x \sqrt{4 x^2-9}}=$
A
$\frac{2}{3} \log \left|\frac{x-3}{x+3}\right|+c$
B
$\frac{4}{3} \tan ^{-1}\left(\frac{\sqrt{4 x^2-9}}{3}\right)+c$
C
$\frac{2}{3} \log \left|\frac{x+3}{x-3}\right|+c$
D
$\frac{1}{3} \tan ^{-1}\left(\frac{\sqrt{4 x^2-9}}{3}\right)+c$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12