1
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
If $\cos A=\frac{3}{4}$, then $\left(32 \sin \frac{A}{2} \sin \frac{5 A}{2}\right)=$
A
7
B
16
C
11
D
8
2
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
If $A=\frac{1}{\pi}\left[\begin{array}{cc}\sin ^{-1} \frac{1}{2} & \tan ^{-1} \frac{x}{\pi} \\ \sin ^{-1} \frac{x}{\pi} & \cot ^{-1} \sqrt{3}\end{array}\right] \quad B=\frac{1}{\pi}\left[\begin{array}{cc}-\cos ^{-1} \frac{1}{2} & \tan ^{-1} \frac{x}{\pi} \\ \sin ^{-1} \frac{x}{\pi} & -\tan ^{-1} \sqrt{3}\end{array}\right]$ and I is an identity matrix of order $2 \times 2$, then $A-B=$
A
2I
B
$\frac{1}{2}I$
C
I
D
0
3
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
The length of the latus rectum of a conic $49 y^2-16 x^2=784$ is
A
$\frac{49}{2}$
B
$\frac{49}{\sqrt{2}}$
C
$\frac{7}{\sqrt{2}}$
D
$\frac{7}{2}$
4
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
The curve $4 y=3 x^4-2 x^2$ attains ----------- at the points $x=-\frac{1}{\sqrt{3}}$ and $x=\frac{1}{\sqrt{3}}$
A
both minimum values
B
a maximum value and a minimum value respectively
C
a minimum value and a maximum value respectively
D
both maximum values
EXAM MAP