1
GATE CSE 2015 Set 2
Numerical
+2
-0
A Young tableau is a $$2D$$ array of integers increasing from left to right and from top to bottom. Any unfilled entries are marked with $$\infty ,$$ and hence there cannot be any entry to the right of, or below a $$\infty .$$ The following Young tableau consists of unique entries.
1 | 2 | 5 | 14 |
---|---|---|---|
3 | 4 | 6 | 23 |
10 | 12 | 18 | 25 |
31 | ∞ |
∞ | ∞ |
When an element is removed from a Young tableau, other elements should be moved into its place so that the resulting table is still a Young tableau (unfilled entries may be filled in with a $$\infty $$). The minimum number of entries (other than $$1$$) to be shifted, to remove $$1$$ from the given Young tableau is ______________.
Your input ____
2
GATE CSE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Suppose you are provided with the following function declaration in the C programming language.
int partition(int a[], int n);
The function treats the first element of a[ ] as a pivot and rearranges the array so that all elements less than or equal to the pivot is in the left part of the array, and all elements greater than the pivot is in the right part. In addition, it moves the pivot so that the pivot is the last element of the left part. The return value is the number of elements in the left part.
The following partially given function in the C programming language is used to find the kth smallest element in an array a[ ] of size n using the partition function. We assume k≤n.
int kth_smallest (int a[], int n, int k)
{
int left_end = partition (a, n);
if (left_end+1==k) {
return a[left_end];
}
if (left_end+1 > k) {
return kth_smallest (___________);
} else {
return kth_smallest (___________);
}
}
The missing arguments lists are respectively3
GATE CSE 2015 Set 2
MCQ (Single Correct Answer)
+1
-0.3
An unordered list contains $$n$$ distinct elements. The number of comparisons to find an element in this list that is neither maximum nor minimum is
4
GATE CSE 2015 Set 2
MCQ (Single Correct Answer)
+1
-0.3
Consider two decision problems $${Q_1},{Q_2}$$ such that $${Q_1}$$ reduces in polynomial time to $$3$$-$$SAT$$ and $$3$$-$$SAT$$ reduces in polynomial time to $${Q_2}.$$ Then which one of the following is consistent with the above statement?
Paper analysis
Total Questions
Algorithms
5
Compiler Design
3
Computer Networks
6
Computer Organization
4
Data Structures
3
Database Management System
4
Digital Logic
3
Discrete Mathematics
12
Operating Systems
4
Programming Languages
3
Software Engineering
3
Theory of Computation
4
Web Technologies
1
More papers of GATE CSE
GATE CSE 2024 Set 2
GATE CSE 2024 Set 1
GATE CSE 2023
GATE CSE 2022
GATE CSE 2021 Set 2
GATE CSE 2021 Set 1
GATE CSE 2020
GATE CSE 2019
GATE CSE 2018
GATE CSE 2017 Set 2
GATE CSE 2017 Set 1
GATE CSE 2016 Set 2
GATE CSE 2016 Set 1
GATE CSE 2015 Set 1
GATE CSE 2015 Set 3
GATE CSE 2015 Set 2
GATE CSE 2014 Set 2
GATE CSE 2014 Set 3
GATE CSE 2014 Set 1
GATE CSE 2013
GATE CSE 2012
GATE CSE 2011
GATE CSE 2010
GATE CSE 2009
GATE CSE 2008
GATE CSE 2007
GATE CSE 2006
GATE CSE 2005
GATE CSE 2004
GATE CSE 2003
GATE CSE 2002
GATE CSE 2001
GATE CSE 2000
GATE CSE 1999
GATE CSE 1998
GATE CSE 1997
GATE CSE 1996
GATE CSE 1995
GATE CSE 1994
GATE CSE 1993
GATE CSE 1992
GATE CSE 1991
GATE CSE 1990
GATE CSE 1989
GATE CSE 1988
GATE CSE 1987
GATE CSE
Papers
2023
2022
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987