1
GATE CSE 1995
Subjective
+5
-0
Let $${G_1}$$ and $${G_2}$$ be subgroups of a group $$G$$.
(a) Show that $${G_1}\, \cap \,{G_2}$$ is also a subgroup of $$G$$.
(b) $${\rm I}$$s $${G_1}\, \cup \,{G_2}$$ always a subgroup of $$G$$?
2
GATE CSE 1995
Subjective
+2
-0
Prove that in a finite graph, the number of vertices of odd degree is always even.
3
GATE CSE 1995
Subjective
+5
-0
How many minimum spanning tress does the following graph have? Draw them (Weights are assigned to the edges). GATE CSE 1995 Discrete Mathematics - Graph Theory Question 32 English
4
GATE CSE 1995
MCQ (Single Correct Answer)
+2
-0.6
If the proposition $$\neg p \Rightarrow q$$ is true, then the truth value of the proposition $$\neg p \vee \left( {p \Rightarrow q} \right)$$ where $$'\neg '$$ is negation, $$' \vee '$$ is inclusive or and $$' \Rightarrow '$$ is implication, is
A
true
B
multiple-valued
C
false
D
cannot be determined
EXAM MAP