1
GATE CSE 1995
+1
-0.3
The number of elements in the power set $$P(S)$$ of the set $$S = \left\{ {\left\{ \phi \right\},1,\left\{ {2,3} \right\}} \right\}$$ is
A
$$2$$
B
$$4$$
C
$$8$$
D
None of the above
2
GATE CSE 1995
+1
-0.3
Let $$R$$ be a symmetric and transitive relation on a set $$A$$. Then
A
$$R$$ is reflexive and hence an equivalence relation.
B
$$R$$ is reflexive and hence partial order.
C
$$R$$ is not reflexive and hence not an equivalence relation.
D
None of the above.
3
GATE CSE 1995
+1
-0.3
The rank of the following (n + 1) x (n + 1) matrix, where a is a real number is $$\left[ {\matrix{ 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr . & . & . & . & . & . & . \cr . & . & . & . & . & . & . \cr . & . & . & . & . & . & . \cr 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr } } \right]$$$A 1 B 2 C n D Depends on the value of a 4 GATE CSE 1995 MCQ (Single Correct Answer) +1 -0.3 The rank of the following (n + 1) x (n + 1) matrix, where a is a real number is $$\left[ {\matrix{ 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr . & . & . & . & . & . & . \cr . & . & . & . & . & . & . \cr . & . & . & . & . & . & . \cr 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr } } \right]$$$
A
1
B
2
C
n
D
Depends on the value of a
GATE CSE Papers
2023
2022
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
EXAM MAP
Medical
NEET