The figure shows a vertical retaining wall with backfill consisting of cohesive-frictional soil and a failure plane developed due to passive earth pressure. The forces acting on the failure wedge are: P as the reaction force between the wall and the soil, R as the reaction force on the failure plane, C as the cohesive force along the failure plane and W as the weight of the failure wedge. Assuming that there is no adhesion between the wall and the wedge, identify the most appropriate force polygon for the wedge.
A square footing is to be designed to carry a column load of 500 kN which is resting on a soil stratum having the following average properties: bulk unit weight = 19 kN/m3; angle of internal friction = 0° and cohesion = 25 kPa. Considering the depth of the footing as 1 m and adopting Meyerhof’s bearing capacity theory with a factor of safety of 3, the width of the footing (in m) is _________ (round off to one decimal place)
[Assume the applicable shape and depth factor values as unity; ground water level at greater depth.]
A circular pile of diameter 0.6 m and length 8 m was constructed in a cohesive soil stratum having the following properties: bulk unit weight = 19 kN/m3; angle of internal friction = 0° and cohesion = 25 kPa.
The allowable load the pile can carry with a factor of safety of 3 is __________ kN (round off to one decimal place).
[Adopt: Adhesion factor, α = 1.0 and Bearing capacity factor, Nc = 9.0]
For the flow setup shown in the figure (not to scale), the hydraulic conductivities of the two soil samples, Soil 1 and Soil 2, are 10 mm/s and 1 mm/s, respectively. Assume the unit weight of water as 10 kN/m3 and ignore the velocity head. At steady state, what is the total head (in m, rounded off to two decimal places) at any point located at the junction of the two samples? _____