In the given figure, Point O indicates the stress point of a soil element at initial non-hydrostatic stress condition. For the stress path (OP), which of the following loading conditions is correct?
The figure shows a vertical retaining wall with backfill consisting of cohesive-frictional soil and a failure plane developed due to passive earth pressure. The forces acting on the failure wedge are: P as the reaction force between the wall and the soil, R as the reaction force on the failure plane, C as the cohesive force along the failure plane and W as the weight of the failure wedge. Assuming that there is no adhesion between the wall and the wedge, identify the most appropriate force polygon for the wedge.
A square footing is to be designed to carry a column load of 500 kN which is resting on a soil stratum having the following average properties: bulk unit weight = 19 kN/m3; angle of internal friction = 0Β° and cohesion = 25 kPa. Considering the depth of the footing as 1 m and adopting Meyerhofβs bearing capacity theory with a factor of safety of 3, the width of the footing (in m) is _________ (round off to one decimal place)
[Assume the applicable shape and depth factor values as unity; ground water level at greater depth.]
A circular pile of diameter 0.6 m and length 8 m was constructed in a cohesive soil stratum having the following properties: bulk unit weight = 19 kN/m3; angle of internal friction = 0Β° and cohesion = 25 kPa.
The allowable load the pile can carry with a factor of safety of 3 is __________ kN (round off to one decimal place).
[Adopt: Adhesion factor, Ξ± = 1.0 and Bearing capacity factor, Nc = 9.0]