1
GATE CE 2006
MCQ (Single Correct Answer)
+2
-0.6
For a given matrix $$A = \left[ {\matrix{ 2 & { - 2} & 3 \cr { - 2} & { - 1} & 6 \cr 1 & 2 & 0 \cr } } \right],$$ one of the eigen value is $$3.$$ The other two eigen values are
A
$$2,-5$$
B
$$3,-5$$
C
$$2,5$$
D
$$3,5$$
2
GATE CE 2006
MCQ (Single Correct Answer)
+2
-0.6
Using Cauchy's Integral Theorem, the value of the integral (integration being taken in counter clockwise direction)

$$\int\limits_C {{{{z^3} - 6} \over {3z - i}}} dz$$ is where C is |z| = 1
A
$${{2\pi } \over {81}} - 4\pi i$$
B
$${\pi \over 8} - 6\pi i$$
C
$${{4\pi } \over {81}} - 6\pi i$$
D
1
3
GATE CE 2006
MCQ (Single Correct Answer)
+1
-0.3
The solution of the differential equation $$\,{x^2}{{dy} \over {dx}} + 2xy - x + 1 = 0\,\,\,$$ given that at $$x=1,$$ $$y=0$$ is
A
$$\,{1 \over 2} - {1 \over x} + {1 \over {2{x^2}}}$$
B
$$\,{1 \over 2} - {1 \over x} - {1 \over {2{x^2}}}$$
C
$${1 \over 2} + {1 \over x} + {1 \over {2{x^2}}}$$
D
$$ - {1 \over 2} + {1 \over x} + {1 \over {2{x^2}}}$$
4
GATE CE 2006
MCQ (Single Correct Answer)
+2
-0.6
The directional derivative of $$\,\,f\left( {x,y,z} \right) = 2{x^2} + 3{y^2} + {z^2}\,\,$$ at the point $$P(2,1,3)$$ in the direction of the vector $${\mkern 1mu} \vec a = \widehat i - 2\widehat k{\mkern 1mu} $$ is _________.
A
$$-2.785$$
B
$$-2.145$$
C
$$-1.789$$
D
$$1.000$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12