1
KCET 2021
MCQ (Single Correct Answer)
+1
-0

The value of $$\int e^x\left[\frac{1+\sin x}{1+\cos x}\right] d x$$ is equal to

A
$$e^x \tan \frac{x}{2}+C$$
B
$$e^x \tan x+C$$
C
$$e^x(1+\cos x)+C$$
D
$$e^x(1+\sin x)+C$$
2
KCET 2020
MCQ (Single Correct Answer)
+1
-0

The value of $$\int \frac{1+x^4}{1+x^6} d x$$ is

A
$$\tan ^{-1} x+\tan ^{-1} x^3+C$$
B
$$\tan ^{-1} x+\frac{1}{3} \tan ^{-1} x^3+C$$
C
$$\tan ^{-1} x-\frac{1}{3} \tan ^{-1} x^3+C$$
D
$$\tan ^{-1} x+\frac{1}{3} \tan ^{-1} x^2+C$$
3
KCET 2020
MCQ (Single Correct Answer)
+1
-0

The value of $$\int e^{\sin x} \sin 2 x d x$$ is

A
$$2 e^{\sin x}(\sin x-1)+C$$
B
$$2 e^{\sin x}(\sin x+1)+C$$
C
$$2 e^{\sin x}(\cos x+1)+C$$
D
$$2 e^{\sin x}(\cos x-1)+C$$
4
KCET 2020
MCQ (Single Correct Answer)
+1
-0

If $$\int \frac{3 x+1}{(x-1)(x-2)(x-3)} d x A \log |x-1| B \log |x-2|+C \log |x-3|+C$$, then the values of $$A, B$$ and $$C$$ are respectively

A
$$5,-7,-5$$
B
$$2,-7,-5$$
C
$$5,-7,5$$
D
$$2,-7,5$$
KCET Subjects
EXAM MAP