1
KCET 2019
MCQ (Single Correct Answer)
+1
-0

$$\sqrt[3]{y} \sqrt{x}=\sqrt[6]{(x+y)^5}$$, then $$\frac{d y}{d x}=$$

A
$$x-y$$
B
$$\frac{x}{y}$$
C
$$\frac{y}{x}$$
D
$$x+y$$
2
KCET 2018
MCQ (Single Correct Answer)
+1
-0
If $\cos y=x \cos (a+y)$ with $\cos a \neq \pm 1$, then $\frac{d y}{d x}$ is equal to
A
$\frac{\sin a}{\cos ^2(a+y)}$
B
$\frac{\cos ^2(a+y)}{\sin a}$
C
$\frac{\cos a}{\sin ^2(a+y)}$
D
$\frac{\cos ^2(a+y)}{\cos a}$
3
KCET 2018
MCQ (Single Correct Answer)
+1
-0
If $f(x)=|\cos x-\sin x|$, then $f^{\prime}\left(\frac{\pi}{6}\right)$ is equal to
A
$-\frac{1}{2}(1+\sqrt{3})$
B
$\frac{1}{2}(1+\sqrt{3})$
C
$-\frac{1}{2}(1-\sqrt{3})$
D
$\frac{1}{2}(1-\sqrt{3})$
4
KCET 2018
MCQ (Single Correct Answer)
+1
-0
$$ \text { If } y=\sqrt{x+\sqrt{x+\sqrt{x+\ldots \infty}}} \text {, then } \frac{d y}{d x} \text { is equal } $$ to
A
$\frac{1}{y^2-1}$
B
$\frac{1}{2 y+1}$
C
$\frac{2 y}{y^2-1}$
D
$\frac{1}{2 y-1}$
KCET Subjects
EXAM MAP