1
KCET 2018
MCQ (Single Correct Answer)
+1
-0
If the vector $a \hat{i}+\hat{j}+\hat{k} ; \hat{i}+b \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+c \hat{k}$ are coplanar $(a \neq b \neq c \neq 1)$, then the value of $a b c-(a+b+c)$ is equal to
A
2
B
-2
C
0
D
-1
2
KCET 2018
MCQ (Single Correct Answer)
+1
-0
If $\vec{a}=\hat{i}+\lambda \hat{j}+2 \hat{k} ; \vec{b}=\mu \hat{i}+\hat{j}-\hat{k}$ are orthogonal and $|\vec{a}|=|\vec{b}|$, then $(\lambda, \mu)$ is equal to
A
$\left(\frac{1}{4} \frac{7}{4}\right)$
B
$\left(\frac{7}{4}, \frac{1}{4}\right)$
C
$\left(\frac{1}{4}, \frac{9}{4}\right)$
D
$\left(\frac{-1}{4}, \frac{9}{4}\right)$
3
KCET 2017
MCQ (Single Correct Answer)
+1
-0
If $a$ and $\mathbf{b}$ are unit vectors, then angle between $\mathbf{a}$ and $\mathbf{b}$ for $\sqrt{3} \mathbf{a}-\mathbf{b}$ to be unit vector is
A
$45^{\circ}$
B
$60^{\circ}$
C
$90^{\circ}$
D
$30^{\circ}$
4
KCET 2017
MCQ (Single Correct Answer)
+1
-0
If $\mathbf{a}=2 \hat{\mathbf{i}}+\lambda \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\mathbf{b}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ are orthogonal, then value of $\lambda$ is
A
$3 / 2$
B
1
C
0
D
$-5 / 2$
KCET Subjects
EXAM MAP