The Power $$(\mathrm{P})$$ radiated from an accelerated charged particle is given by $$\mathrm{P} \propto \frac{(q \mathrm{a})^{\mathrm{m}}}{\mathrm{c}^{\mathrm{n}}}$$ where $$\mathrm{q}$$ is the charge, $$\mathrm{a}$$ is the acceleration of the particle and $$\mathrm{c}$$ is speed of light in vacuum. From dimensional analysis, the value of $$m$$ and $$n$$ respectively, are
Two convex lens $$(\mathrm{L}_1$$ and $$\mathrm{L}_2)$$ of equal focal length $$\mathrm{f}$$ are placed at a distance $$\frac{\mathrm{f}}{2}$$ apart. An object is placed at a distance $$4 \mathrm{f}$$ in the left of $$\mathrm{L_1}$$ as shown in figure. The final image is at
Which of the following quantity has the dimension of length ?
(h is Planck's constant, m is the mass of electron and c is the velocity of light)
The speed distribution for a sample of $$\mathrm{N}$$ gas particles is shown below. $$\mathrm{P}(\mathrm{v})=0$$ for $$\mathrm{v}>2 \mathrm{v}_0$$. How many particles have speeds between $$1.2 \mathrm{v}_0$$ and $$1.8 \mathrm{v}_0$$ ?