1
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

For every real number $$x \neq-1$$, let $$\mathrm{f}(x)=\frac{x}{x+1}$$. Write $$\mathrm{f}_1(x)=\mathrm{f}(x)$$ & for $$\mathrm{n} \geq 2, \mathrm{f}_{\mathrm{n}}(x)=\mathrm{f}\left(\mathrm{f}_{\mathrm{n}-1}(x)\right)$$. Then $$\mathrm{f}_1(-2) \cdot \mathrm{f}_2(-2) \ldots . . \mathrm{f}_{\mathrm{n}}(-2)$$ must be

A
$$\frac{2^{\mathrm{n}}}{1.3 .5 \ldots \ldots(2 \mathrm{n}-1)}$$
B
$$1$$
C
$$\frac{1}{2}\binom{2 n}{n}$$
D
$$\binom{2 \mathrm{n}}{\mathrm{n}}$$
2
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$\mathrm{U}_{\mathrm{n}}(\mathrm{n}=1,2)$$ denotes the $$\mathrm{n}^{\text {th }}$$ derivative $$(\mathrm{n}=1,2)$$ of $$\mathrm{U}(x)=\frac{\mathrm{L} x+\mathrm{M}}{x^2-2 \mathrm{~B} x+\mathrm{C}}$$ (L, M, B, C are constants), then $$\mathrm{PU}_2+\mathrm{QU}_1+\mathrm{RU}=0$$, holds for

A
$$\mathrm{P}=x^2-2 \mathrm{~B}, \mathrm{Q}=2 x, \mathrm{R}=3 x$$
B
$$\mathrm{P}=x^2-2 \mathrm{~B} x+\mathrm{C}, \mathrm{Q}=4(x-\mathrm{B}), \mathrm{R}=2$$
C
$$\mathrm{P}=2 x, \mathrm{Q}=2 \mathrm{~B}, \mathrm{R}=2$$
D
$$\mathrm{P}=x^2, \mathrm{Q}=x, \mathrm{R}=3$$
3
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

The equation $$2^x+5^x=3^x+4^x$$ has

A
no real solution
B
only one non-zero real solution
C
infinitely many solutions
D
only three non-negative real solutions
4
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Consider the function $$\mathrm{f}(x)=(x-2) \log _{\mathrm{e}} x$$. Then the equation $$x \log _{\mathrm{e}} x=2-x$$

A
has at least one root in $$(1,2)$$
B
has no root in $$(1,2)$$
C
is not at all solvable
D
has infinitely many roots in $$(-2,1)$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12