Consider the function $$\mathrm{f}(x)=(x-2) \log _{\mathrm{e}} x$$. Then the equation $$x \log _{\mathrm{e}} x=2-x$$
If $$\alpha, \beta$$ are the roots of the equation $$a x^2+b x+c=0$$ then $$\lim _\limits{x \rightarrow \beta} \frac{1-\cos \left(a x^2+b x+c\right)}{(x-\beta)^2}$$ is
If $$\mathrm{f}(x)=\frac{\mathrm{e}^x}{1+\mathrm{e}^x}, \mathrm{I}_1=\int_\limits{\mathrm{f}(-\mathrm{a})}^{\mathrm{f}(\mathrm{a})} x \mathrm{~g}(x(1-x)) \mathrm{d} x$$ and $$\mathrm{I}_2=\int_\limits{\mathrm{f}(-\mathrm{a})}^{\mathrm{f}(\mathrm{a})} \mathrm{g}(x(1-x)) \mathrm{d} x$$, then the value of $$\frac{I_2}{I_1}$$ is
Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a differentiable function and $$f(1)=4$$. Then the value of $$\lim _\limits{x \rightarrow 1} \int_\limits4^{f(x)} \frac{2 t}{x-1} d t$$, if $$f^{\prime}(1)=2$$ is